2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

[]

«[» и «]» квадратные скобки

Открывающаяся квадратная скобка начинает определение класса символов, закрывающаяся квадратная скобка заканчивает это определение. Сама по себе закрывающаяся квадратная скобка не имеет специального значения. Если закрывающаяся квадратная скобка должна входить в класс символов, то она должна быть первым символом в определении (после начального » ^ «, если нужно), либо должна быть предварена символом обратной косой черты «».

Класс символов совпадает с единственным символом в исходной строке. Этот символ должен входить в множество, определенное классом, либо, если в начале определения присутствует » ^ «, не входить в это множество. Если требуется включить символ «^» в класс, то он должен быть либо не первым символом в определении, либо перед ним должен быть символ обратной косой черты «».

К примеру, класс символов [aeiou] совпадет с любой гласной буквой в нижнем регистре, в то время как [^aeiou] совпадет с любым символом, не являющимся гласной в нижнем регистре. Заметьте, что символ » ^ » это просто удобный способ задания множества символов путем перечисления символов, не входящих в это множество. Класс символов не является утверждением, он потребляет символ из исходной строки и не совпадает, если текущая позиция находится в конце исходной строки.

Когда установлен режим сравнения без учета регистра, символы в определении класса представляют обе версии символа (в верхнем и в нижнем регистре). Так, к примеру, сравнение с классом [aeiou] в режиме без учета регистра будет успешным как для » A » так и для » a «, а сравнение с классом [^aeiou] режиме без учета регистра будет неуспешным для » A «, в то время как с учетом регистра оно было бы успешным.

Символ перевода строки в классе символов никогда не рассматривается специальным образом, вне зависимости от установки опций PCRE_DOTALL и PCRE_MULTILINE. Так, сравнение [^a] с символом перевода строки всегда будет успешным.

Символ минус «-» может использоваться для указывания диапазонов символов внутри класса. К примеру [d-m] совпадет с любой буквой между » d » и » m » включительно. Если символ минус «-» сам должен присутствовать в классе символов, то перед ним должен стоять символ обратной косой черты «», либо он должен находится в позиции, когда его нельзя проинтерпретировать как указатель диапазона, то есть в начале или в конце определения класса.

Запрещается указывать символ » ] » в качестве конца диапазона символов. То есть шаблон [W-]46] будет проинтерпретирован как класс из двух символов » W » и «-» за которым следует строка » 46] » и, таким образом будет совпадение со строками » W46] » или » -46] «. Тем не менее, если перед символом » ] » стоит символ обратной косой черты «», то он будет проинтерпретирован как конец диапазона. То есть [W-]46] будет проинтерпретирован как единственный класс, состоящий из указания диапазона за которым указаны еще два отдельных символа. В качестве конца диапазона может также использоваться восьмеричное или шестнадцатеричное представление символа » ] «.

Диапазоны указываются для набора символов ASCII. В диапазонах можно использовать числовые коды символов, к примеру: [00-37] . Если диапазон включает буквы и установлен режим проверки без учета регистра, то совпадение будет происходить с буквами в любом регистре. К примеру, объявление [W-c] эквивалентно объявлению [][^`wxyzabc] в режиме без учета регистра.

Типы символов d , D , s , S , w и W также могут использоваться в определениях классов символов, при этом они добавляют в класс символы, которым соответствуют. К примеру, [dABCDEF] совпадет с любой шестнадцатеричной цифрой. Символ » ^ » может использоваться совместно с типами символов в верхнем регистре для удобного задания более ограниченных наборов символов, чем те, которые получаются при использовании соответствующего типа символов в нижнем регистре. Так, к примеру [^W_] совпадет с буквой или цифрой, но не с символом «_».

Хотя любые не алфавитно-цифровые символы, за исключением «», «-» и » ^ » (в начале), и завершающего » ] » не имеют специального смысла внутри класса символов, ничто не запрещает предварять их символом обратной косой черты «».

Используются в математике для задания приоритета математических и логических операций. Например, (2+3)·4 означает, что надо сначала сложить 2 и 3, а затем сумму умножить на 4; аналогично выражение означает, что сначала выполняется логическое сложение а затем — логическое умножение Наряду с квадратными скобками используются также для записи компонент векторов:

Круглые скобки в математике используются также для выделения аргументов функции: для обозначения открытого сегмента и в некоторых других контекстах. Иногда круглыми скобками обозначается скалярное произведение векторов:

(здесь приведены три различных варианта написания, встречающиеся в литературе) и смешанное (тройное скалярное) произведение:

При обозначении диапазона чисел круглые скобки обозначают, что числа, которые находятся по краям множества не включаются в это множество. То есть запись А = (1;3) означает, что в множество включены числа, которые 1(открытый) интервал.

В химических формулах круглые скобки применяются для выделения повторяющихся функциональных групп, например, (NH4)2CO4, Fe2(SO4)3, (C2H5)2O. Также скобки используются в названиях неорганических соединений для обозначения степени окисления элемента, например, хлорид железа(II), гексацианоферрат(III) калия.

Скобки (обычно круглые, как в этом предложении) употребляются в качестве знаков препинания в естественных языках.

Во многих языках программирования используются круглые скобки для выделения конструкций. Например, в языках Паскаль и Си в скобках указываются параметры вызова процедур и функций, а в Лиспе — для описания списка.

Квадратные скобки

В лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе.

Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их [заложников] было около 100 человек».

Квадратными скобками в математике могут обозначаться:

  • Операция взятия целой части числа.
  • Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
  • Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
  • Закрытые сегменты; запись [1;3] означает, что в множество включены числа . В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
  • Коммутатори антикоммутатор хотя для последнего иногда используют фигурные скобки без нижнего индекса.
  • Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений).

В химии квадратными скобками обозначают комплексные анионы и катионы, например: Na2[Fe(NO)(CN)5], [Ag(NH3)2] + . Также, по номенклатуре IUPAC в квадратные скобки заключается количество атомов в мостиках между двумя атомами в названии органических полициклических соединений, например: бицикло[2,2,2]октан.

В вики-разметке двойные квадратные скобки используются для внутренних ссылок, перенаправлений, категорий и интервики, одинарные — для внешних.

В программировании чаще всего применяются для указания индекса элемента массива.

Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура).

Фигурные скобки

Фигурными скобками в одних математических текстах обозначается операция взятия дробной части, в других — они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. Одинарная фигурная скобка объединяет системы уравнений или неравенств. В математике и классической механике фигурными скобками обозначается оператор специального вида, называемый скобками Пуассона: Как уже было сказано выше, иногда фигурными скобками обозначают антикоммутатор.

В вики-разметке двойные фигурные скобки применяются для шаблонов.

В программировании фигурные скобки являются или операторными (Си, C++, Perl и комментарием (Паскаль), могут также служить для образования списка (в Сетл).

Угловые скобки

В математике угловыми скобками обозначают кортеж, реже — скалярное произведение в предгильбертовом пространстве, например:

В квантовой механике угловые скобки используются в качестве так называемых бра и кет (от англ. bracketскобка), введённых П. А. М. Дираком для обозначения квантовых состояний (векторов) и матричных элементов. При этом квантовые состояния обозначаются как (кет-вектор) и (бра-вектор), их скалярное произведение как матричный элемент оператора А в определённом базисе как

Кроме того, в физике угловыми скобками обозначают усреднение (по времени или другому непрерывному аргументу), например, — среднее значение по времени от величины f.

В текстологии и издании литературных памятников угловыми скобками обозначают лакуны в тексте — .

Типографика

В HTML / программировании) для записи угловых скобок используют схожие по написанию парные знаки арифметических отношений неравенства « » .

В типографике же угловые скобки являются самостоятельными символами. От « » их можно отличить по бо́льшему углу между сторонами — .

В ТеХе для записи угловых скобок используются команды «langle» и «rangle».

В стандартной пунктуации китайского, японского и корейского языков используются специальные символы — шевроны (англ. chevron ), схожие по написанию с угловыми скобками — для горизонтальной 〈 и 〉 или 《 и 》 и традиционной вертикальной печати — ︿ и ﹀ или ︽ и ︾ .

ASCII-тексты

В некоторых языках разметки, напр., HTML, XML угловыми скобками выделяют теги.

В вики-разметке также можно использовать HTML-разметку, например комментарии — « », которые видны только при редактировании статьи.

В программировании угловые скобки используются редко, чтобы не создавать путаницы между ними и знаками отношений (« »). Например в Си угловые скобки используются в директиве препроцессора #include вместо кавычек, чтобы показать что включаемый заголовочный файл необходимо искать в одном из стандартных каталогов для заголовочных файлов, например в следующем примере:

Читать еще:  Чем очистить кровь с мягкой мебели?

файл stdio.h находится в стандартном каталоге, а myheader.h — в текущем каталоге (каталоге исходника программы).

В некоторых текстах, сдвоенные парные « » используются для записи кавычек-ёлочек, например — >.

Косые скобки

Появились на пишущих машинках для экономии клавиш.

В программировании на языке Си косые скобки вместе с дополнительным знаком «*» обозначают начало и конец комментария:

Прямые скобки

Используются в математике для обозначения модуля числа или вектора, определителя матрицы:

Двойные прямые скобки

Используются в математике для обозначения нормы элемента линейного пространства: ||x||; иногда — для матриц:

Квадратные скобки в математике — значение, основные символы и примеры

Общая характеристика

Главная задача знаков — описание этапов осуществляемых действий. Математическое уравнение или выражение имеет одиночную пару квадратных, фигурных и других скобок, а также может использовать их некоторое количество.

Значение и разновидности

Скобки — это парные знаки, используемые во всевозможных областях. Чтобы правильно выстроить фразу в русском языке, для понимания смысла текста в предложении они употребляются как знаки препинания. С начальных классов школы изучают основы этих знаков.

В расчетах первая из скобок считается открывающей, а вторая — замыкающей. Оба знака соответствуют друг другу, но также используются те, в которых открытие или закрытие не различается (косые /…/, прямые скобки |…|, двойные прямые ||…||. Раскрывать значение можно чаще всего в математике, физике, химии и остальных науках для указания важности выполнения операции в формулах. На компьютерной клавиатуре представлены все виды знаков препинания.

Разновидности:

  • Круглые ().
  • Квадратные [ ].
  • Фигурные < >.
  • Угловые ⟨ ⟩ ( в ASCII-текстах).

Открытие круглых () произошло в 1556 году для подкоренного выражения. По правилу первым выполняется действие внутри знака, затем произведение или определение частного (деление), а в конце — суммирование и разница.

В Microsoft word, Excel включена электронная конфигурация этих знаков. Часто используемые виды скобок, следующие: (), [ ], < >(), [ ], < >. Также встречаются двойные, называемые обратными (]] и [ [) или > в виде уголка. Их использование является двойственным — с открывающейся и замыкающей скобочкой.

Основные цели квадратной скобки в математике:

  • Взятие целой части числового значения.
  • Округление до близкого знака.
  • Возведение в степень, взятие производной или подсчёт подинтегрального выражения.
  • Приоритет операций. Примером может быть следующий способ: [(5+6)*2]3.

Другие варианты расчета:

  • Векторное произведение — с = [a, b] = [a*b] = a*b.
  • Закрытие сегмента [1;2] означает, что в множество включены цифры 1 и 2.
  • Коммутатор [А, В = [А, В].
  • Заменяют круглые скобки при записи матриц по правилам.
  • Одна [ объединяет несколько уравнений или неравенств.
  • Нотация Айверсона.

Квадратные скобки в математике обозначают, что действие выполняется последовательно. Эти знаки позволяют разграничить операции.

Треугольные актуальны в теории групп. Правило записи ⟨ a ⟩ n характеризует циклическую группу порядка n, сформированную элементом a.

Круглые (операторные) () используются в математике для описания первостепенности действий. Например, (1 +5)*3 означает, что нужно сначала сложить 1 и 5, а затем полученную величину перемножить на 3. Наряду с квадратными, используются для записи разных компонент векторов, матриц и коэффициентов.

На уроке математики преподаватель объясняет, как раскрыть скобки в уравнении для последующего решения. Фигурная одинарная < встречается при решении систем уравнений, обозначает пересечение данных, а [[ используется при их слиянии.

Одинарные или двойные выражения

Употребление [] происходит реже. Одно уравнение со скобками объединяет несколько значений или неравенств различных размеров. Для решения совокупности нужно выполнить любое условие. Конец, завершение действия замыкает закрывающий знак.

В персональных компьютерах, ноутбуках, нетбуках встроена кодировка Юникод, закрепленная не за левыми или правыми объединяющими знаками, а за открывающими и замыкающими, поэтому при воспроизведении печатного текста со скобочками в режиме «справа налево» каждый знак меняет внешнее направление на обратное.

Квадратные скобки в уравнении означают, что установлен порядок действий, задаются границы промежутков и необходимость выполнения действия над выражением. Двойные квадратные скобки необходимы для записи выражений наряду с круглыми для рационального порядка действий.

По правилам интервал [−a;+a] записывается в виде нестрогого неравенства −a≤x≤a, означающего, что x находится на промежутке от −a до a включительно.

Также используются в математике как круглые, так и прямые знаки, означающие, что на конце отрезка, рядом с которым имеется круглая скобка, равенство строгое, а на том, где скобка квадратная — нестрогое. Интервал (−5;5] иначе записывается неравенством $5.

В середине парного знака с отделяющей точкой или запятой указываются два числа — наименьшее, затем большее, ограничивающие интервал. Круглая скобочка, прилегающая к цифре, означает невключение числа в промежуток, а квадратная — добавление.

В некоторых учебных пособиях для вузов встречаются расшифровки числовых интервалов, в которых вместо круглой скобочки (применяется обратная квадратная скобка ], и наоборот. В обозначениях запись ]0, 1[ равносильна (0, 1).

Открытая квадратная скобка (символ [) значит, что совокупность представляет систему уравнений разных размеров, для которых справедливы все множества решений для каждого уравнения, входящего в общее задание. Например, [x+11=2yy2−12=0

Прежде чем решать задачу или выполнять задание, нужно правильно определить принципы действий. В некоторых случаях скобочки могут быть не нужны, а иногда их обязательно нужно поставить.

Прочие знаки

Для математических, алгебраических и прочих расчетов важно знать различие обобщающих знаков. От правильности вычислений зависит итоговый результат.

Удобство записи системы уравнений

Применение фигурных знаков относится к представлению совмещения множеств. При решении системы с фигурной скобкой уравнения пересекаются, а [] объединяет их.

Скобки в математике: их виды и предназначение

В данной статье рассказывается о скобках в математике и рассматриваются виды и применения, термины и методы использования при решении или для описания материала. В заключение будут решены подобные примеры с подробными комментариями.

Основные виды скобок, обозначения, терминология

Для решения заданий в математике используются три вида скобок: ( ) , [ ] , < >. Реже встречаются скобки такого вида ] и [ , называемые обратными, или и > , то есть в виде уголка. Их применение всегда парное, то есть имеется открывающаяся и закрывающаяся скобка в любом выражении, тогда оно имеет смысл . скобки позволяют разграничить и определить последовательность действий.

Скобки для указания порядка выполнения действий

Основное предназначение скобок – указание порядка выполняемых действий. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.

Рассмотрим на примере заданное выражение. Если дан пример вида 5 + 3 — 2 , тогда очевидно, что действия выполняются последовательно. Когда это же выражение записывается со скобками, тогда их последовательность меняется. То есть при ( 5 + 3 ) — 2 первое действие выполняется в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5 + ( 3 — 2 ) , тогда в начале производятся вычисления в скобках, после чего сложение с числом 5 . На исходное значение в этом случае оно не повлияет.

Рассмотрим пример, который покажет, как при изменении положения скобок может измениться результат. Если дано выражение 5 + 2 · 4 , видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид ( 5 + 2 ) · 4 , то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.

Выражения могут содержать несколько пар скобок, тогда выполнения действий начинаются с первой. В выражении вида ( 4 + 5 · 2 ) − 0 , 5 : ( 7 − 2 ) : ( 2 + 1 + 12 ) видно, что первым делом выполняются действия в скобках, после чего деления, а в конце вычитание.

Существуют примеры, где имеются вложенные сложные скобки вида 4 · 6 — 3 + 8 : 2 и 5 · ( 1 + ( 8 — 2 · 3 + 5 ) — 2 ) ) — 4 . Тогда начинается выполнение действий с внутренних скобок. Далее производится продвижение к внешним.

Если имеется выражение 4 · 6 — 3 + 8 : 2 , тогда очевидно, что в первую очередь выполняются действия в скобках. Значит, следует отнять 3 от 6 , умножить на 4 и прибавить 8 . В конце следует разделить на 2 . Только так можно получить верный ответ.

На письме могут быть использованы скобки разных размеров. Это делается для удобства и возможности отличия одной пары от другой. Внешние скобки всегда большего размера, чем внутренние. То есть получаем выражение вида 5 — 1 : 2 + 1 2 + 3 — 1 3 · 2 · 3 — 4 . Редко встречается применение выделенных скобок ( 2 + 2 · ( 2 + ( 5 · 4 − 4 ) ) ) · ( 6 : 2 − 3 · 7 ) · ( 5 − 3 ) или применяют квадратные, например, [ 3 + 5 · ( 3 − 1 ) ] · 7 или фигурные < 5 + [ 7 − 12 : ( 8 − 5 ) : 3 ] + 7 − 2 >: [ 3 + 5 + 6 : ( 5 − 2 − 1 ) ] .

Перед тем, как приступить к решению, важно правильно определить порядок действий и разобрать все необходимые пары скобок. Для этого следует добавлять разные виды скобок или менять их цвет. Пометка скобки другим цветом удобна для решения, но занимает много времени, поэтому на практике чаще всего применяют круглые, фигурные и квадратные скобки.

Отрицательные числа в скобках

Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5 + ( − 3 ) + ( − 2 ) · ( − 1 ) , 5 + — 2 3 , 2 5 7 — 5 + — 6 7 3 · ( — 2 ) · — 3 , 5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.

Скобки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида − 5 · 4 + ( − 4 ) : 2 , то очевидно, что знак минуса перед 5 можно не заключать в скобки, а при 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 число 2 , 2 записано вначале, значит скобки также не нужны. Со скобками можно записать выражение ( − 5 ) · 4 + ( − 4 ) : 2 или 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 . Запись, где имеются скобки, считается более строгой.

Знак минуса может находиться не только перед числом, но и перед переменными, степенями, корнями, дробями, функциями, тогда их следует заключить в скобки. Это такие записи, как 5 · ( − x ) , 12 : ( − 22 ) , 5 · — 3 + 7 — 1 + 7 : — x 2 + 1 3 , 4 3 4 — — x + 2 x — 1 , 2 · ( — ( 3 + 2 · 4 ) , 5 · ( — log 3 2 ) — ( — 2 x 2 + 4 ) , sin x · ( — cos 2 x ) + 1

Читать еще:  Как убрать потертости с мебели?

Скобки для выражений, с которыми выполняются действия

Использование круглых скобок связано с указанием в выражении действий, где имеется возведение в степень, взятие производной, функции. Они позволяют упорядочивать выражения для удобства дальнейшего решения.

Скобки в выражениях со степенями

Выражение со степенью не всегда следует заключать в скобки, так как степень располагается надстрочно. Если имеется запись вида 2 x + 3 , то очевидно, что х + 3 – это показатель степени. Когда степень записывается в виде знака ^, тогда остальное выражение следует записывать с добавлением скобок, то есть 2 ^ ( x + 3 ) . Если записать это же выражение без скобок, то получится совсем другое выражение. При 2 ^ x + 3 на выходе получим 2 x + 3 .

Основание степени не нуждается в скобках. Поэтому запись принимает вид 0 3 , 5 x 2 + 5 , y 0 , 5 . Если в основании имеется дробное число, тогда можно использовать круглые скобки. Получаем выражения вида ( 0 , 75 ) 2 , 2 2 3 32 + 1 , ( 3 · x + 2 · y ) — 3 , log 2 x — 2 — 1 2 x — 1 .

Если выражение основания степени не взять в скобки, тогда показатель может относиться ко всему выражению, что повлечет за собой неправильное решение. Когда имеется выражение вида x 2 + y , а — 2 – это его степень, то запись примет вид ( x 2 + y ) — 2 . При отсутствии скобок выражение приняло бы вид x 2 + y — 2 , что является совершенно другим выражением.

Если основанием степени является логарифм или тригонометрическая функция с целым показателем, тогда запись приобретает вид sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g , a r c c t g , log , ln или l g . При записи выражения вида sin 2 x , a r c cos 3 y , ln 5 e и log 5 2 x видим, что скобки перед функциями не меняют значения всего выражения, то есть они равноценны. Получаем записи вида ( sin x ) 2 , ( a r c cos y ) 3 , ( ln e ) 5 и log 5 x 2 . Допустимо опущение скобок.

Скобки в выражениях с корнями

Использование скобок в подкоренном выражении бессмысленно, так как выражение вида x + 1 и x + 1 являются равнозначными. Скобки не дадут изменений при решении.

Скобки в выражениях с тригонометрическими функциями

Если имеются отрицательные выражения у функций типа синус, косинус, тангенс, котангенс, арксинус, арккосинус, арктангенс, арккотангенс, тогда необходимо использовать круглые скобки. Это позволит правильно определить принадлежность выражения к имеющейся функции. То есть получим записи вида sin ( − 5 ) , cos ( x + 2 ) , a r c t g 1 x — 2 2 3 .

При записи sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g и a r c c t g при имеющемся числе скобки не используют. Когда в записи присутствует выражение, тогда имеет смысл их поставить. То есть sin π 3 , t g x + π 2 , a r c sin x 2 , a r c t g 3 3 с корнями и степенями, cos x 2 — 1 , a r c t g 3 2 , c t g x + 1 — 3 и подобные выражения.

Если в выражении содержатся кратные углы типа х , 2 х , 3 х и так далее, скобки опускаются. Разрешено записывать в виде sin 2 x , c t g 7 x , cos 3 α . Во избежание двусмысленности скобки можно добавить в выражение. Тогда получаем запись вида sin ( 2 · x ) : 2 вместо sin 2 · x : 2 .

Скобки в выражениях с логарифмами

Чаще всего все выражения логарифмической функции заключаются в скобки для дальнейшего правильного решения. То есть получаем ln ( e − 1 + e 1 ) , log 3 ( x 2 + 3 · x + 7 ) , l g ( ( x + 1 ) · ( x − 2 ) ) . Опущение скобок разрешено в том случае, когда однозначно понятно, к какому выражению относится сам логарифм. Если есть дробь, корень или функция можно записывать выражения в виде log 2 x 5 , l g x — 5 , ln 5 · x — 5 3 — 5 .

Скобки в пределах

При имеющихся пределах используют скобки для представления выражения самого предела. То есть при суммах, произведениях, частных или разностях принято записывать выражения в скобках. Получаем, что lim n → 5 1 n + n — 2 и lim x → 0 x + 5 · x — 3 x — 1 x + x + 1 : x + 2 x 2 + 3 . Опущение скобок предполагается, когда имеется простая дробь или очевидно, к какому выражению относится знак. Например, lim x → ∞ 1 x или lim x → 0 ( 1 + x ) 1 x .

Скобки и производная

При нахождении производной часто можно встретить применение круглых скобок. Если имеется сложное выражение, тогда вся запись берется в скобки . Например, ( x + 1 ) ‘ или sin x x — x + 1 .

Подынтегральные выражения в скобках

Если необходимо проинтегрировать выражение, то следует записать его в круглых скобках. Тогда пример примет вид ∫ ( x 2 + 3 x ) d x , ∫ — 1 1 ( sin 2 x — 3 ) d x , ∭ V ( 3 x y + z ) d x d y d z .

Скобки, отделяющие аргумент функции

При наличии функции чаще всего применяются круглые скобки для их обозначения. Когда дана функция f с переменной х , тогда запись принимает вид f ( x ) . Если имеются несколько аргументов функций, то такая функция получит вид F ( x , y , z , t ) .

Скобки в периодических десятичных дробях

Использование периода обусловлено применением скобок при записи. Сам период десятичной дроби заключается в скобки. Если дана десятинная дробь вида 0 , 232323 … тогда очевидно, что 2 и 3 мы заключаем в круглые скобки. Запись приобретает вид 0 , ( 23 ) . Это характерно для любой записи периодической дроби.

Скобки для обозначения числовых промежутков

Для того, чтобы изобразить числовые промежутки применяют скобки четырех видов: ( ) , ( ] , [ ) и [ ] . В скобках прописываются промежутки, в каких функция существует, то есть имеет решение. Круглая скобка означает, что число не входит в область определения, квадратная – входит. При наличии бесконечности принято изображать круглую скобку.

То есть при изображении промежутков получим, что ( 0 , 5 ) , [ − 0 , 5 , 12 ) , — 10 1 2 , — 5 2 3 , [ 5 , 700 ] , ( − ∞ , − 4 ] , ( − 3 , + ∞ ) , ( − ∞ , + ∞ ) . Не вся литература одинаково использует скобки. Есть случаи, когда можно увидеть запись такого вида ] 0 , 1 [ , что означает ( 0 , 1 ) или [ 0 , 1 [ , что значит [ 0 , 1 ) , причем смысл выражения не меняется.

Обозначения систем и совокупностей уравнений и неравенств

Системы уравнений, неравенств принято записывать при помощи фигурной скобки вида < . Это означает, что все неравенства или уравнения объединены этой скобкой. Рассмотрим на примере использования скобки. Система уравнений вида x 2 - 1 = 0 x 2 + x - 2 = 0 или неравенства с двумя переменными x 2 - y >0 3 x + 2 y ≤ 3 , cos x 1 2 x + π 3 = 0 2 x 2 — 4 ≥ 5 -система, состоящая из двух уравнений и одного неравенства.

Использование фигурных скобок относится к изображению пересечения множеств. При решении системы с фигурной скобкой фактически приходим к пересечению заданных уравнений. Квадратная скобка служит для объединения.

Уравнения и неравенства обозначаются [ скобкой в том случае, если необходимо изобразить совокупность. Тогда получаем примеры вида ( x — 1 ) ( x + 7 ) = 0 x — 2 = 12 + x 2 — x + 3 и x > 2 x — 5 y = 7 2 x + 3 y ≥ 1

Можно встретить выражения, где имеются и система и совокупность:

x ≥ 5 x 3 x > 4 , 5

Фигурная скобка для обозначения кусочной функции

Кусочная функция изображается при помощи одиночной фигурной скобки, где имеются формулы, определяющие функцию, содержащие необходимые промежутки. Посмотрим на примере формулы с содержанием промежутков типа x = x , x ≥ 0 — x , x 0 , где имеется кусочная функция.

Скобки для указания координат точки

Для того, чтобы изобразить координатные точки в виде промежутков, используют круглые скобки. Они могут быть расположены как на координатной прямой, так и в прямоугольной системе координат или n-мерном пространстве.

Когда координата записывается как А ( 1 ) , то означает, что точка А имеет координату со значением 1 , тогда Q ( x , y , z ) говорит о том, что точка Q содержит координаты x , y , z .

Скобки для перечисления элементов множества

Множества задаются при помощи перечисления элементов, входящих в его область. Это выполняется при помощи фигурных скобок, где сами элементы прописываются через запятую. Запись выглядит таким образом А = < 1 , 2 , 3 , 4 >. Видно, что множество состоит из значений, перечисленных в скобках.

Скобки и координаты векторов

При рассмотрении векторов в системе координат используется понятие координат вектора. То есть при обозначении используют координаты, которые записаны в виде перечисления в скобках.

Учебники предлагают два вида обозначения: a → 0 ; — 3 или a → 0 ; — 3 . Обе записи равнозначны и имеют значение координат 0 , — 3 . При изображении в трехмерном пространстве добавляется еще одна координата. Тогда запись выглядит так: A B → 0 , — 3 , 2 3 или A B → 0 , — 3 , 2 3 .

Обозначение координат может быть как со значком вектора на самом векторе, так и без. Но запись координат производится через запятую в виде перечисления. Запись принимает вид a = ( 2 , 4 , − 2 , 6 , 1 2 ) , где вектор обозначается в пятимерном пространстве. Реже можно увидеть обозначение двумерного пространства в виде a = 3 — 7

Скобки для указания элементов матриц

Частое применение скобок предусмотрено в матрицах. Все элементы фиксируются при помощи круглых скобок вида A = 4 2 3 — 3 0 0 12 .

Реже можно увидеть использование квадратных скобок.
Тогда матрица приобретает вид A = 4 2 3 — 3 0 0 12 .

Скобки

Ско́бки — па́рные знаки, используемые в различных областях.

  • круглые () скобки;
  • квадратные [ ] скобки;
  • фигурные скобки;
  • угловые $ langle; rangle $ скобки (или в ASCII-текстах).

Обычно первая в паре скобка называется открывающей, а вторая — закрывающей. Почти всегда (за исключением некоторых математических обозначений) открывающая и закрывающая скобки соответствуют друг другу (квадратная — квадратной и т. д.).

Используются также скобки, в которых открывающий и закрывающий знак не различаются, например, косые скобки /…/, прямые скобки |…|, двойные прямые скобки ||…||.

В математике, физике, химии и др. используются при написании формул.

Различные скобки (как и другие, непарные символы ASCII) применяются в смайликах (эмотиконах), например, 🙂.

В системе вёрстки TEΧ есть возможность автоматически подстраивать размер скобок под вложенный в него текст: это делается с помощью команд left и right. Следует заметить, что во избежание синтаксических ошибок эти две команды всегда должны соответствовать друг другу, однако виды скобок в них — не обязательно. Это делает возможным конструкцию вида «left< a \ a right.» для записи систем уравнений.

Круглые скобки

Используются в математике для задания приоритета математических и логических операций. Например, (2+3)·4 означает, что надо сначала сложить 2 и 3, а затем сумму умножить на 4; аналогично выражение $ (A lor B) land C $ означает, что сначала выполняется логическое сложение $ (lor ), $ а затем — логическое умножение $ (land ). $ Наряду с квадратными скобками используются также для записи компонент векторов:

Круглые скобки в математике используются также для выделения аргументов функции: $ w = f(x)+g(y,z),, $ для обозначения открытого сегмента и в некоторых других контекстах. Иногда круглыми скобками обозначается скалярное произведение векторов:

(здесь приведены три различных варианта написания, встречающиеся в литературе) и смешанное (тройное скалярное) произведение:

При обозначении диапазона чисел круглые скобки обозначают, что числа, которые находятся по краям множества не включаются в это множество. То есть запись А = (1;3) означает, что в множество включены числа, которые 1(открытый) интервал.

В химических формулах круглые скобки применяются для выделения повторяющихся функциональных групп, например, (NH4)2CO4, Fe2(SO4)3, (C2H5)2O. Также скобки используются в названиях неорганических соединений для обозначения степени окисления элемента, например, хлорид железа(II), гексацианоферрат(III) калия.

Скобки (обычно круглые, как в этом предложении) употребляются в качестве знаков препинания в естественных языках.

Во многих языках программирования используются круглые скобки для выделения конструкций. Например, в языках Паскаль и Си в скобках указываются параметры вызова процедур и функций, а в Лиспе — для описания списка.

Квадратные скобки

В лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе.

Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их [заложников] было около 100 человек».

Квадратными скобками в математике могут обозначаться:

  • Операция взятия целой части числа.
  • Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
  • Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
  • Закрытые сегменты; запись [1;3] означает, что в множество включены числа $ 1 leq x leq 3 $ . В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
  • Коммутатор $ [A,B] equiv [A,B]_- equiv AB-BA! $ и антикоммутатор $ [A,B]_+ equiv AB+BA,, $ хотя для последнего иногда используют фигурные скобки без нижнего индекса.
  • Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений).

В химии квадратными скобками обозначают комплексные анионы и катионы, например: Na2[Fe(NO)(CN)5], [Ag(NH3)2] + . Также, по номенклатуре IUPAC в квадратные скобки залючается количество атомов в мостиках между двумя атомами в названии органических полициклических соединений, например: бицикло[2,2,2]октан.

В вики-разметке двойные квадратные скобки используются для внутренних ссылок, перенаправлений, категорий и интервики, одинарные — для внешних.

В программировании чаще всего применяются для указания индекса элемента массива.

Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура).

Фигурные скобки

Фигурными скобками в одних математических текстах обозначается операция взятия дробной части, в других — они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. Одинарная фигурная скобка объединяет системы уравнений или неравенств. В математике и классической механике фигурными скобками обозначается оператор специального вида, называемый скобками Пуассона: $ ,. $ Как уже было сказано выше, иногда фигурными скобками обозначают антикоммутатор.

В вики-разметке двойные фигурные скобки применяются для шаблонов.

В программировании фигурные скобки являются или операторными (Си, Java, Perl и PHP), или комментарием (Паскаль), могут также служить для образования списка (в Mathematica).ь

Угловые скобки

В математике угловыми скобками обозначают кортеж, реже — скалярное произведение в предгильбертовом пространстве, например:

В квантовой механике угловые скобки используются в качестве так называемых бра и кет (от англ. bracketскобка), введённых П. А. М. Дираком для обозначения квантовых состояний (векторов) и матричных элементов. При этом квантовые состояния обозначаются как $ |psirangle $ (кет-вектор) и $ langle psi | $ (бра-вектор), их скалярное произведение как $ langle psi_k |psi_lrangle, $ матричный элемент оператора А в определённом базисе как $ langle k |A| lrangle. $

Кроме того, в физике угловыми скобками обозначают усреднение (по времени или другому непрерывному аргументу), например, $ langle f(t)rangle $ — среднее значение по времени от величины f.

В текстологии и издании литературных памятников угловыми скобками обозначают лакуны в тексте — $ langle . rangle $ .

Типографика

В ASCII-текстах (в том числе HTML / XML и программировании) для записи угловых скобок используют схожие по написанию парные знаки арифметических отношений неравенства « » .

В типографике же угловые скобки $ mathcal $ являются самостоятельными символами. От « » их можно отличить по бо́льшему углу между сторонами — $ langlerangle

В ТеХе для записи угловых скобок используются команды «langle» и «rangle».

В стандартной пунктуации китайского, японского и корейского языков используются специальные символы — шевроны (англ. chevron ), схожие по написанию с угловыми скобками — для горизонтальной 〈 и 〉 или 《 и 》 и традиционной вертикальной печати — ︿ и ﹀ или ︽ и ︾ .

ASCII-тексты

В некоторых языках разметки, напр., HTML, XML угловыми скобками выделяют теги.

В вики-разметке также можно использовать HTML-разметку, например комментарии — « », которые видны только при редактировании статьи.

В программировании угловые скобки используются редко, чтобы не создавать путаницы между ними и знаками отношений (« »). Например в Си угловые скобки используются в директиве препроцессора #include вместо кавычек, чтобы показать что включаемый заголовочный файл необходимо искать в одном из стандартных каталогов для заголовочных файлов, например в следующем примере:

файл stdio.h находится в стандартном каталоге, а myheader.h — в текущем каталоге (каталоге исходника программы).

В некоторых текстах, сдвоенные парные « » используются для записи кавычек-ёлочек, например — >.

Косые скобки

Появились на пишущих машинках для экономии клавиш.

В программировании на языке Си косые скобки вместе с дополнительным знаком «*» обозначают начало и конец комментария:

Прямые скобки

Используются в математике для обозначения модуля числа или вектора, определителя матрицы:

Двойные прямые скобки

Используются в математике для обозначения нормы элемента линейного пространства: ||x||; иногда — для матриц:

Написание квадратных скобок в Microsoft Word

Текстовый редактор Microsoft Word предоставляет своим пользователям практически неограниченные функциональные возможности, так необходимые для работы с офисными документами. Те, кому приходится использовать эту программу довольно часто, постепенно узнают ключевые особенности ее работы и познают обилие полезных функций. А вот у малоопытных пользователей нередко возникают вопросы о том, как выполнить ту или иную операцию, например, как поставить квадратные скобки. В настоящей статье расскажем именно об этом.

Квадратные скобки в Ворде

В отличие от более редких символов, квадратные скобки есть на клавиатуре любого компьютера и ноутбука, просто нужно знать, в какой языковой раскладке и как именно их вводить. Но это лишь один из нескольких способов написания интересующих нас сегодня символов в редакторе MS Word, и далее мы рассмотрим все их подробнее.

Способ 1: Клавиши на клавиатуре

Квадратные скобки, как открывающейся, так и закрывающейся, находятся на кнопках клавиатуры с русскими буквами «Х» и «Ъ» соответственно, но вводить их нужно в «латинской» раскладке, к которой относятся английский и немецкий языки. Переключиться с русского на подходящий для решения нашей задачи язык можно клавишами «Ctrl+Shift» или «Alt+Shift» (зависит от установленных в системе настроек), после чего вам останется только поместить указатель курсора (каретку) в то место, куда будут вводиться символы, и просто нажать кнопки с ними на клавиатуре. Так, поочередно нажав «Х» и «Ъ», вы получите запись вида [ ].

Если вы поставили сразу две квадратных скобки, впишите в них нужный текст (или значения). Также можно ввести сначала открывающийся символ, затем добавить запись, а после уже закрывающийся.

Способ 2: Вставка символов

В Microsoft Word есть большой набор встроенных символов, среди которых можно легко отыскать и квадратные скобки.

    Перейдите во вкладку «Вставка» и нажмите кнопку «Символ», которая расположена в одноименной группе. Выберите в развернувшемся меню пункт «Другие символы».

В диалоговом окне, которое перед вами появится, найдите квадратные скобки. Чтобы сделать это быстрее, разверните меню раздела «Набор» и выберите там пункт «Основная латиница».

Этот способ значительно уступает предыдущему в скорости и удобстве своего выполнения, зато позволяет ознакомиться с огромным перечнем символов, которые есть во встроенном наборе текстового редактора от Майкрософт и могут отсутствовать на клавиатуре. О них мы ранее писали в отдельной статье.

Способ 3: Шестнадцатеричные коды

У каждого символа, расположенного в интегрированной библиотеке офисного приложения от Microsoft, есть кодовое обозначение. Вполне логично, что таковое есть и у обеих квадратных скобок (каждой отдельно). Непосредственно для преобразования кода в них нужно также воспользоваться специальной комбинацией клавиш. Если вы не желаете совершать лишние движение и клики мышкой, обращаться к разделу «Символы», поставить квадратные скобки можно следующим образом:

    В месте, где должна располагаться открывающаяся квадратная скобка, установите указатель курсора и переключитесь на английскую раскладку («Ctrl+Shift» или «Alt+Shift», смотря что установленоа в настройках вашей системы).

Введите код «005B» без кавычек.

Не убирая курсор с места, где заканчиваются введенные вами символы, нажмите «Alt+X», после чего перед вами сразу появится открывающаяся квадратная скобка.

Чтобы поставить закрывающуюся скобку, в английской раскладке введите символы «005D» без кавычек.

Не убирая курсор с этого места, нажмите «Alt+X» — код будет преобразован в закрывающуюся квадратную скобку.

Заключение

На этом все, теперь вы знаете о том, как поставить квадратные скобки в текстовом документе Microsoft Word. Какой из описанных методов выбрать, решать вам. Первый — наиболее простой и быстрый, два последующих позволяют ознакомиться с дополнительными возможностями программы и тем, как добавлять в ней любые другие символы.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Ссылка на основную публикацию
Adblock
detector